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Abstract. In this article, we look at the diachronic changes in tango
harmony with the methods of network science. We are able to detect some
significant tendencies of harmonic discourse in the first half of the 20th
century, among them an enrichment of harmonic transitions and power
law frequency distribution of triadic chords with exponents compatible
with a quite small rate of accretion of the vocabulary.
This work was supported by project ‘Evolución musical’ UNTREF.

1 Introduction

Tango is undoubtedly the most transcendent collective cultural creation of the
Ŕıo de la Plata region. Several texts give account of its history, spanning from
the last decades of the 19th century to the present day [1, 2]. In spite of this, to
the extent of our knowledge, no computational musicological study has focused
specifically on tango and its diachronic evolution.

The availability of big corpora of musical data has fostered quantitative evo-
lutionary studies on American popular music [3], jazz harmony [4], electronic art
music [5], musical influence of songs [6], to mention some examples. Recently,
complex networks methods have been employed to analyse pitch and timbre
transitions both in individual works [7], and large collections [8, 9].

We consider chord transition networks built from sampling whole decades
of a corpus of tango recordings. To this end, we assembled a database of 510
recordings of tangos, composed between 1910 and 1960, by downloading all the
tangos from the Web archive Todo Tango [10], and discarding those that con-
tained extramusical elements such as speech or clapping. Some of the recordings
were denoised using Adobe Audition. In case several recordings of the same
tango were available, we preferred the one with the earliest recording date. The
median number of years between composition and recording is 0.

We built different dictionaries of pitch class chroma chords, which became
the networks’ nodes, as follows: we extracted the chromagram with Mirtoolbox
for Matlab [11], using a frame size of 0.2 seconds without overlapping, keeping
only the chroma with energy level above the average over all files, and circularly
shifted them according to an estimation of the tonality of each tango to transpose
them to the tonality of C, in order to have a common tonal framework. Borrowing
the terminology of [8], we call the resulting chroma vectors codewords.

The links of our pitch networks represent harmonic transitions between these
codewords. Specifically, for the purpose of studying the evolution of harmonic
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discourse, we formed 5 collections of codewords, one for each decade in the
year span 1910-1960. Two codewords are connected by a directed edge if they
appear in consecutive analysis frames. In this way we are left with 5 networks
corresponding to the periods 1910-1919 (16 tangos in the collection), 1920-1929
(176 tangos), 1930-1939 (135 tangos), 1940-1949 (139 tangos) and 1950-1959 (64
tangos).

Proceeding in this way, many of the generated codewords do not correspond
to the standard harmonic vocabulary of Western tonal music: beyond usual
triadic chords, all kinds of chromatic harmonies, including the 12-note chromatic
cluster, are obtained. For this reason, we considered two kinds of networks:

a Unfiltered networks, containing all codewords.
b Triadic networks, that is, filtered networks generated by only the triadic

codewords of at most 4 chroma classes, including single chromas and dyads.
We call a codeword triadic if it can be obtained, modulo 12, from one (or
more) of its pitches by stacking consecutive minor or major thirds over it (or
them). In these reduced networks, two triadic codewords are connected if the
second chord is the next triad appearing after the first, ignoring non-triadic
codewords in between. In this way we aim to representing a core harmonic
skeleton, ignoring noisy frames and non-triadic chords arising from passing
notes.

2 Results

Based on the results of Serrà et al. [8] and the models of vocabulary frequency of
[15], we essayed fitting the frequencies of codewords, sorted in decreasing order
(that is, ordered by rank r, where r = 1 for the most frequent codeword and
so forth), with a Zipf law of the form z = Cr−α. For our fitting procedure, we
used the approach of Clauset et al [13, 14]. In the case of unfiltered networks, we
found, for all decades, nice fits with truncated power laws (see Figure 1a). The
scaling exponents obtained vary very little over the years, ranging from α = 1.81
to α = 1.94. They are larger than those found in [8], pointing to a comparatively
more compact and less innovative vocabulary [15], a fact which is to be expected
since the corpus of Serrà et al. is much more varied and massive, consisting on a
million themes of popular music of many different genres. These exponents are
also somewhat smaller than those found in [15] for the distribution of notes in
classical music.

For triadic networks, however, we did not find good fits with pure truncated
power laws. One reason for this could lie in the limited vocabulary considered
here. A more appropriate model in this case is a shifted power law z = (a +
br)−α, with coefficients adjusted to the vocabulary size. This law is derived partly
from the hypothesis that, as the musical corpus grows in time, the frequency of
harmonic innovations goes as a power 1/α of the pre-existing language size [15].

We found nice fits of this model with triadic codewords frequencies, with
exponents now varying between 2.48 and 6.05. (Figure 1b). A tentative expla-
nation of the unusually large exponents, in the context of the aforementioned
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Zipfian shifted power law, is that there is a very slow innovation rate going on in
the basic triadic vocabulary as we consider the whole collection of tangos from a
given decade (hence very small innovation exponent 1/α), and that the changes
occur, instead, mostly at the level of nontriadic chords. In order to see if the
codeword ranking remains stable across the years, we compute the Spearman
rank correlation coefficients of triadic codewords for all pairs of decades. They
are all high, with a minimum of 0.81. So frequent codewords continue to be so
along the history of tango. Tracking the relative frequencies of each triadic chord
type between 1910 and 1960, we observe some steady changes: augmented tri-
ads, half diminished sevenths have a twofold increase, minor sevenths also grow,
although in lesser proportion; there is a small transitory drop in minor triads in
1920-1930 while major triads show a long term falling tendency (Figure 2).

Beyond codeword frequencies, harmonic networks give us a panorama of how
musical discourse transits between the elements of the vocabulary of codewords,
creating stylistic patterns that can be learnt by repeated listening experiences
and subsequently lead to the formation of expectancies and surprise [16, 17].
Usual network measures and metrics can be easily interpreted in our context in
terms of their musical meaning. In the following, we consider several such typical
network coefficients

Density is defined as the fraction of edges present, compared with all possible
n(n − 1)/2 edges (where n is the number of nodes of the network). All our
harmonic networks are sparse in this sense. For triadic networks density is at
most 0.21, while unfiltered networks are much sparser, with densities below 0.006.
Phrased in terms of predictability, this sparseness makes accessible the statistical
learning of transition rules, involving around 2000 different transitions between
the 140 possible triads.

Degrees. Node out-degree k is the number of neighbors following a codeword.
For unfiltered networks, degree distribution is nicely fit with a truncated power
law P (k) = k−γ for k > kmin for the period 1920-1929, with exponent 2.42,
while in the other periods a better fit is a truncated power law with exponential
cutoff, with exponents in the interval [1.93, 2.12]. These values are similar to
those obtained by Serrà et al. [8]. For triadic networks, also good fits are obtained
with truncated shifted power laws, with exponents ranging from 2.92 to 6.17.
While in unfiltered networks the median degree varies little between 2 and 6 ,
for the triadic ones there is a big increase of degree connectivity from a median
of 5 in 1910-1919 to values above 19 in the decades from 1920 to 1950, dropping
somewhat in 1950-1959 to 13. This indicates a strong tendency towards greater
freedom of harmonic discourse, and is also correlative with an increase of the
size of the vocabulary, from 122 codewords in 1910-1919 to 139 codewords in
1920-1929, with a gradual and small decay to 133 nodes in the ‘50s. (Note that
the total number of possible triadic codewords is 151).

From now on, we focus on networks of triads, where results are more easily
interpreted in the framework of classical harmonic analysis. Codeword frequency
and codeword degree are almost perfectly monotonically correlated, with Spear-
man rank coefficients above 0.99 for all decades. So the most frequent chords,
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among which there are the main triads defining tonality, are also the most con-
nected. A notable symmetry emerges here, that also has been observed by Serrà
et al. [8] Contrasting the out-degree of the major and minor triads over all
chromatic scale degrees (in the musical sense of the word), with their similarly
defined in-degree (the number of different chords that lead to a given one), their
values are extremely similar, with their mean ratio over all triads between 0.99
and 1.02, and standard deviations between 0.01 and 0.1, for all decades.

Clustering measures the transitivity of the network. The local clustering co-
efficient ci = 2Ti

ki(ki−1) gives the number of closed triangles among the nodes

connected to node i. Harmonically, if we interpret the network as giving the
stylistically permissible chord transitions, a high ci implies that a transition be-
tween codeword i and another codeword that could be done directly, also could
often be realized with an intermediate linking chord, adding to variety of har-
monic conduction. Here we measure local connectivity by C, the average of ci.
A global measure of connectivity is the average shortest path length l. This gives
the average of the minimum number of intermediate chords that are necessary
to go between two given codewords. For instance, the appearance of bold and
abrupt harmonic progressions that link tonally distant chords side by side would
tend to reduce the value of l. High levels of clustering and small values of l de-
fine a small-world network [18]. Finally, assortativity by degree Γ is a coefficient
measuring the tendency of nodes with similar degree to connect to each other. It
is positive if this effectively occurs and negative if nodes of high degree tend to
connect with nodes of low degree and vice versa. To interpret these coefficients,
they are to be compared with the same coefficients computed from a random
network with the same degree distribution, which we construct with the rewiring
method described in [19]. For our networks, there is a marked increase of C (the
average of ci) from a value of 0.35 in 1910-1919 to values in the range [0.47,
0.58] for the following decades. Corresponding random networks have clustering
coefficients in [0.1, 0.18]. At the same time, l decreases from 2.57 to 1.86 between
the first two decades, and then slightly increases to 2.11 in the 50s; these values
are smaller than the ones obtained by randomizing links. So globally, the small-
worldness increases along time, implying a trend towards relatively more rich
and daring harmonic progressions, with more different choices and also shorter
ways to go from a chord to another (Figure 3). Assortativity remains negative,
in the range [-0.09, -0.21], with a slight increase to -0.17 in the ’50s. Keeping
in mind the direct correspondence between frequent and connected chords, this
means an increasing tendency to avoid direct connections between the most
common triads. However, while assortativity values are more negative than ran-
dom in 1920-1950, they are less negative than for the randomized networks in
1910-1919 and 1950-1959.

3 Conclusions

Looking at tango from the network science perspective, we are able to single out
some clear trends in tango evolution, and to compare them with the changes
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in other genres of music described in [8]. Tango appears to have a relatively
limited harmonic vocabulary (even if we consider unfiltered networks), and data
are compatible with an innovation model exhibiting a slow rate of appearance of
novelties. But in the period considered here, inversely to the tendencies shown
in [8], progressively richer and more complex chord transitions emerged within
this universe, which increased its small world features.
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Fig. 1. a) Complementary cumulative distribution of codeword frequencies and their
fits by power laws for unfiltered networks. Curves are chronologically shifted by a factor
of 10 in the vertical axis for ease of visualization. b) Rank-frequency distribution of
normalized codeword frequencies (respect to maximum frequency) and their fits by
shifted power laws for triadic networks. Curves are chronologically shifted by 1 in the
vertical axis.

Fig. 2. Evolution of relative frequencies of triadic chord types.

Fig. 3. Average shortest path length l versus clustering coefficients for actual (triangles)
and randomized (squares) triadic networks.


